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Executive Summary

The objective of this report is to present a new methodology that creates
involvement for cases with missing Blood Alcohol Concentration (BAC) in
Reporting System (FARS). Missing data can result for a number of reasons,

estimates of alcohol
the Fatality Analysis
the most frequent of

. l 0 4  lwhich is that persons are not always tested for alcohol. The degree of testing for drivers or
nonoccupants varies among states. In 1996, the differences in testing between the states ranged from
a low of 15 percent known BACs to a high of 75 percent known BACs.

NHTSA has undertaken several approaches to remedy the problem of missing blood alcohol test
results in FARS. The approach currently in use employs a linear discriminant model that estimates
the probability that a driver or nonoccupant has a BAC in grams per deciliter (g/dl) of 0.00, 0.01 to
0.09 or 0.10 and greater. The estimates are generated only for drivers and nonoccupants
(pedestrians, pedalcylists) for whom alcohol test results were not reported.

The proposed methodology extends the current model by simulating specific values of BAC across
the full range of possible values rather than estimating probabilities. By imputing ten values of BAC
for each missing value, valid statistical inferences like variance, confidence intervals and deviation
tests can be drawn. The estimation of discrete values also facilitates analysis by nonstandard
boundaries of alcohol involvement (e.g., 0.08+).

This report documents several validation analyses by comparing the results from the existing
discriminant model and the multiple imputation model across traditional categories of age, gender,
time of the. day, day of the week and crash type. The estimates presented include a mix of both
known and estimated BACs.

Because of the strong similarities between the two methods, they are expected to produce similar
results. In particular, it was expected that estimates ofthe rates of alcohol involvement (BAC>O) and
rates in excess of the typical legal limit (BAC? 10) within important subclasses would be similar. In
many respects, the pattern of results was indeed similar. One important difference, however, was that
under the new method the estimated rates of alcohol involvement (BAC>O) were generally higher.
Positive differences of about l-2% in the rate of alcohol involvement appeared consistently across
most vehicle classes and demographic subgroups, and across classifications of crashes by time of day
and day of week. Differences in rates across subgroups, and trends in rates across time, were quite
similar under the two methods as shown in the exhibit below. The only major difference was that the
baseline rates of alcohol involvement were slightly but consistently higher under the new method.
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1. Introduction

The purpose of this project was to create multiple imputations of missing values of Blood
Alcohol Concentration (BAC) in the Fatality Analysis Reporting System (FARS) maintained by the
National Highway Traffic Safety Administration (NHTSA).

Alcohol involvement is a major contributing factor in the occurrence of traffic crashes.
Alcohol has been found to be more prevalent in fatal crashes than in personal injury and property-
damage-only crashes. FARS collects information on all fatal motor vehicle crashes that occur on
public roads, if the fatality occurs within 30 days of the date of the crash. The most direct measure
of a driver’s or a nonoccupant’s (pedestrian’s or pedalcyclist’s) alcohol involvement is a known BAC
test result, either based on breath tests administered by police, or blood tests. BAC results for many
drivers and nonoccupants involved in fatal crashes are not known. The significant number of missing
BAC values greatly inhibits the ability to describe the extent and trends of alcohol involvement in fatal
crashes, to identify high-risk groups and times for targeting countermeasures, and to evaluate the
effectiveness of anti-drunk driving programs.

NHTSA  has undertaken several approaches to remedying the missing data problem. The most
recent approach, and the one currently in use, is described in the report “A Methodfor Estimating
Posterior BAC Distributions for Persons Involved in Fatal Traffic Accidents ” (Klein, 1986). This
method employs 34evel linear discriminant models to estimate the probability that a particular driver
or nonoccupant has a BAC in grams per deciliter (g/dl) of 0.00 (no alcohol), 0.01-0.09  (some
alcohol) or 0.10 and greater (generally considered legally intoxicated in most states). A limitation
of this approach is that it does not support analyses regarding other classifications of BAC (e.g. 0.08+
or 0.20+). ,

The present project develops a new method for addressing missing values ofBAC.  The new
method extends the approach of Klein (1986) in two important ways. First, rather than estimating
probabilities that the unknown values of BAC fall into a small number of distinct categories, we now
impute specific values of BAC across the full range of possible responses. The distribution of BAC
may be regarded as semicontinuous; a substantial proportion of BAC values are zero, and the
remaining responses can be modeled as continuously distributed over the positive real number line
(although in practice BAC values are recorded only to two decimal places). The system of Klein
(1986) is based on a coarsened version of Blood Alcohol Concentration which we shall call “BAC3 ”
and which takes possible values 1 (when BAC=O),  2 (when O<BAC<. 10) and 3 (when BAC=. 10 or
greater). The extension to imputing actual values of BAC, rather than probabilities for BAC3,
facilitates a greater variety of statistical analyses. Under the new system, for example, one can easily
examine boundaries other than 0.10 (e.g. 0.05) to exploring possible consequences of different
standards for driving under the influence of alcohol.

The second important extension to Klein’s (1986) methodology is the use of multiple
imputation. Multiple imputation (Rubin,  1987; Schafer, 1997) is a simulation-based approach to
missing data in which each missing value is replaced by several plausible values drawn randomly from
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a probability distribution, reflecting the uncertainty with which the missing values can be predicted
from the observed data. Each missing BAC result is replaced by ten simulated values. The ten
imputations, together with the non-missing BAC values, produce ten apparently complete versions
of BAC, each of which may be analyzed by standard complete-data techniques. Results from
analyzing the ten versions will vary somewhat, and this variation is used to estimate the extra
uncertainty in statistical summaries due to missing data. In particular, the ten sets of answers are
combined with simple computational macros implementing rules given by Rubin (1987). Combining
the ten answers according to these special rules produces statistical inferences that are valid (i.e.,
estimates of parameters that are consistent, nominal 95% confidence intervals that are in fact 95%
confidence intervals, nominal 5% tests that are in fact 5% tests, and so on) under quite general
conditions. Single imputation, even if done properly to allow consistent estimation of parameters,
uniformly underestimates variability because one imputed value cannot possibly represent uncertainty.

Klein’s (1986) estimated probabilities for BAC3, although limiting in ways discussed earlier,
are preferable to single imputation because the probabilities do represent uncertainty about which
category is correct. This approach was reasonable and appropriate, considering the computational
and theoretical constraints of that era. Nevertheless, estimated probabilities for BAC3 are
unattractive for many complete-data analyses, especially those pertaining to other categorizations of
BAC. Moreover, they do not reflect any uncertainty about the estimated parameters in the
discriminant models used to compute the probabilities. Multiple imputation of semicontinuous BAC
addresses both of these issues simultaneously.

Aside from these two important issues, however, the new approach bears strong similarities
to Klein’s (1986) method. The explorations and computational work throughout this project
consistently supported the wisdom of Klein’s basic modeling approach. Some additional extensions
(described below) that were originally planned were dropped because of their unforseen complexity
and limited anticipated payoff in improving data quality.

2. Exploratory work and the development of an imputation strategy

FARS is an interwoven hierarchical dataset containing detailed information on fatal crashes
and all vehicles and persons involved. Primary interest lies in BAC values for “actively involved
persons,” which include the drivers ofvehicles and of any nonoccupants (e.g. pedestrians). Following
the approach of Klein (1986), the actively involved person is used (rather than the crash or vehicle)
as the basic unit of analysis, and construct statistical models to predict actively involved persons’
BAC from other available covariates. Some of these covariates are characteristics of the crash itself,
such as the day of the week and time of the crash, and the location of the crash in relation to the
roadway. Other covariates include characteristics of the person (age, gender, possession of a valid
driver’s license, use of a seat belt, etc.) and the type of vehicle being driven, if any. In earlier work,
Klein (1986) found that rates of alcohol involvement varied widely by vehicle class; for example,
drivers of motorcycles were far more likely to have positive levels of BAC than drivers of medium
and heavy trucks. Aside from vehicle class, the most powerful predictor of BAC was a variable called
DRINKING, which records the opinion of law enforcement officials at the scene as to whether
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alcohol may have been involved. Indeed, the initial exploratory work with 1993 FARS data confirmed
the presence of strong relationships between BAC, vehicle class, and DRINKIN G. Building a useful
statistical model to predict BAC from vehicle class, DIUNKING, and other covariates requires special
care, however, because of the semicontinuous nature of BAC, and because some of the covariates
(especially DRINKIN G) are missing for many actively involved persons.

Over the last decade, dramatic advances have been made in the theory and practice of
statistical analyses with missing data. New computational methods described by Schafer (1997) make
it possible to generate multiple imputations of missing values in complex multivariate settings. In
particular, chapter 9 of Schafer’s (1997) book presents algorithms for imputation under the general
location model (GLOM), a multivariate probability model for datasets containing both continuous
and categorical variables. These algorithms have been implemented by Schafer in a free software
library called MIX, which operates within the commercial statistical package S-PLUS (distributed by
MathsoR, Inc.). Early in this project, it became apparent that some version of the GLOM could be
useful for imputing missing values of BAC. The semicontinuous BAC may be reexpressed as two
variables: a dichotomous or binary indicator equal to 1 if BAC=O and 2 if BAC>O, and a continuous
variable indicating the actual level of BAC if BAC>O. (When BAC=O, the continuous variable is
undefined and may be regarded as “missing.“) By recoding BAC as two variables, it becomes possible
to model the relationships between BAC and other covariates using a GLOM and impute the missing
BAC values in a straightforward way.

Semicontinuous variables are not unique to this study; they arise in many areas of applied
statistics. In econometric studies, for example, semicontinuous variables are often described by two-
stage regression models (e.g., Manning et al., 1987).  The first stage is a logit or probit regression to
predict the probability of a nonzero response, and the second stage is a linear regression to predict
the mean response (often after applying a log or power transformation) among the units for which
the response is nonzero. Modeling the semicontinuous variable in two stages is desirable not only
from a statistical viewpoint, but for scientific reasons as well; the covariates  that predict the
probability of nonzero  response may be quite distinct from those that influence the level of response

-among the nonzero respondents. The strategy for modeling BAC mirrors the two-stage models of
the econometric literature. The first step is to identify covariates that are significantly related to the
dichotomized version of BAC, and then identify those related to the level of BAC among persons
having BA00. Once these covariates are identified, they are incorporated into a GLOM that
simultaneously estimates their relationships to the two-variable recoded version of BAC. Missing
values of these variables are then multiply imputed using MIX software.

Initially, the model was to describe all actively involved persons for any given year of FARS
by a single large GLOM. This proved to be impractical, however, for a number of reasons. First, the
vastness and sparseness of the data caused by the large number of potential predictors made it .
difficult to fit such a model with the computer resources available to us. Second, to specify such a
model would have been difficult because the meaning and importance of many potential predictors
varies across vehicle classes. For example, the predictor RESTR (use of restraint device) is an
indicator of seat belt use for drivers of cars and trucks, an indicator of helmet use for motorcyclists,
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and irrelevant for nonoccupants. LSTAT (possession of a valid driver’s license) is irrelevant for
nonoccupants. Gender is significantly related to BAC within some vehicle classes (e.g., passenger
cars), but within other classes (e.g., medium and heavy trucks) the rarity of female drivers makes the
estimation of the relationship nearly impossible. Because of these complications, we retreated from
a full simultaneous modeling effort across all classes to fit a model separately within each class.
Splitting the data by vehicle class, which was consistent with the modeling work of Klein (1986)
effectively allowed us to consider all potential interactions between vehicle class and all other
covariates for predicting BAC.

An additional complication was that the missingness in the police report of alcohol
involvement was clearly nonignorable. Most missing data methods currently in use, including the
procedures described by Schafer (1997) assume that nonresponse is ignorable (Rubin,  1976 or Little
and Rubin,  1987)  in the sense that the probability that a data value is missing does not depend on that
value (although it may depend on other quantities that are observed). For the variable DRINKING,
which is missing for a substantial proportion of cases, the meaning of a missing value seemed to vary
dramatically from state to state. Sometimes a missing value probably indicated “no alcohol”; the form
was left blank because there were no indications of alcohol involvement present. In other cases the
police data may have been unreported for “policy” reasons; and sometimes it was probably simply
missing for reasons not related to actual BAC after controlling for other variables. An imputation
method that assumed ignorable nonresponse for DRINKING might have introduced serious biases
into estimates of alcohol involvement, particularly at the state level. To address this problem,
DRINKING was treated as a fully observed three-level covariate, with “missing” regarded as a
substantive category. This treatment, although not fully satisfactory, is consistent with the modeling
approach used by Klein (1986). A better solution would have been to develop a plausible probability
model for the nonresponse that includes interactions between DRINKING and state. Developing and
fitting such a model would have been a very substantial task, well outside the scope of this project.

A final issue that created difficulty was the sparseness of data caused by a large number of
potential predictors. Within each vehicle class, the imputation model was to include BAC,
DRINKING, and up to ten additional categorical predictors. Theoretically it would have been
desirable to include all predictors in each model, but many of the vehicle classes simply did not have
enough cases to support such a large number of predictors. It was found to be necessary to eliminate
predictors that were not significantly related to BAC, using another standard statistical technique
formerly employed by Klein (1986): stepwise  fitting of models, bringing in important predictors and
leaving out predictors that appear to have little predictive power. A theoretical problem with this
approach is that the omitted variables are implicitly being treated as though they are precisely known
to be unrelated to BAC, when in fact their associations with BAC may not be well estimated.
Omitting these predictors, rather than acknowledging that there may be only weak evidence about
their associations with BAC, results in multiple imputations that understate the actual levels of
statistical uncertainty. The GLOM multiple imputation procedure does correctly reflect the
uncertainty due to the estimation of parameters within the model, but ignores uncertainty for
parameters omitted from the system as a result of stepwise variable selection. This understatement
of uncertainty, however, is present to an even greater degree in the methodology of Klein (1986)
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which does not represent parameter uncertainty of any kind. Adopting a stepwise variable selection
approach was seen as a reasonable compromise, given the scope of this project and the limitations
of existing models and software.

3. Implementing multiple imputation in FARS

The GLOM at the heart of the multiple imputation procedure is a multivariate statistical model
describing the entire joint distribution of BAC, DRINKING, and other significant predictors within
a vehicle class. Because this GLOM is being used to predict missing values of BAC, most of the effort
was devoted to creating a plausible conditional model for BAC given the predictors. In the FARS
database, however, missing values are found not only in BAC but in many of the covariates as well.
To handle arbitrary patterns of missing values in the covariates, GLOM specifies a joint probability
distribution for all variables at once, and the MIX software imputes missing values for BAC and all
other variables simultaneously. Because the model was not specifically designed to produce
high-quality imputations for missing covariates, however, these imputed values are discarded from
the final multiply-imputed data set and only the imputed values for BAC are retained.

The GLOM is most easily understood as a two-stage model that captures the variable’s
semicontinuous nature. In the first stage, a dichotomized version of BAC (i.e. a binary indicator for
BAC>O versus BAC=O)  is related to categorical covariates  by a conventional loglinear model for
cross-classified categorical data. In the second stage, the actual level of Zog(BAc) among the cases
for which BAC>O is related to a subset of the same covariates by conventional linear regression. A
regression model for the logarithm of BAC, rather than for BAC itself, is attractive because negative
values of B-AC are excluded. Moreover, distributions of nonzero BAC values tend to be positively
skewed, and taking logs tends to reduce this skewness. In many vehicle classes, however, the
logarithmic transformation was not powerful enough to create a plausible normal linear regression
model; it was often necessary to apply another power transformation after taking logs. The actual
steps of the model-fitting and imputation procedure are detailed below.

Step 1: Separating cases by vehicle class

Following the earlier work of Klein (1986), the population of actively involved persons in a
given year of FARS is first separated by vehicle class, because experience has shown that the
relationships between BAC and the covariates  may vary substantially across the classes. Indeed, the
actual definitions of some covariates vary by vehicle class, so describing the entire FARS dataset by
a single model is conceptually and practically difficult. The model-fitting and imputation steps
described below are carried out separately within each class, and the imputed datasets are merged
back into a single dataset. The classification, which is given in Exhibit 1, is the same as that used by
Klein (1986) but with one modification: Due to the increased popularity of minivans in the last
decade, these vehicles are represented as a separate category. Preliminary analyses indicated that the
numbers of motor homes and buses appearing in FARS in a single year are typically too small to
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support individual models for these classes.’ To overcome this problem, BUS and HOME are
combined with MISC for purposes of modeling. To allow for the possibility that the rates of alcohol
involvement might vary among these groups, however, a main effect to distinguish among the three
groups (BUS, HOME, MISC) is considered for inclusion in the variable-selection procedures below.
At this point, any missing values of BAC for persons under 12 years old are set to zero. Any observed
nonzero values of BAC in this age group, however, are allowed to stand.

Exhibit 1

“;, ,,, ,:::,:  ,:,, ‘. Vehicle classes used in BAC imputation modelrch............................................................................,., ,: 1.; ., : ,.:.::::.:::;: ,. .‘.I : ‘:.:.: .:.:.:.:. .:.,.:., ..:.::.: ;.;,..._. :,:, ;::,:::::::::.,: .;,._  _.,.,  ;_.;; .;,., ,.,.,.,.. .;,. . . . . . . . . . . . . . . . . . . . . . . . .._...................._ _., ;, .:.:.:  ‘.’ ‘.; : : _.,.I  _., ,., _. ‘.’,.,.’ .,.,. ,.; :.,_ 1. ., ‘.’ .;; ‘.’ ;, .,., _. _‘.‘. ..’ “..~.‘.‘.‘_‘_‘,’  ..‘.‘. ::. : ::. :.:.: .,’ _.;,.: ._.,:  .,.:.:  1, :,:I .:;:.: 1: ;: .;, ‘. .‘.’ ,. .::,:.. ‘.‘. .,_ :,:: :ci,,,~~~~~~~~~~~~~~~~~~~I~~~‘-~~~~~~i~~~~~~~~.~:~~~~-~~~~~~i~~~~::.:::~.-:~:..::.:~.:  ‘.:.1.111.1.:‘1.:‘1.111:.1:::1..  ~..:::.:::~I:~:jl:~.~:~,~:~~~  ,I:: ::.I. ::.1:1 ;;; :I ‘1.:; ,’ ‘y$:.:, 1’ .;:: ::;_; .‘:. ;:l::::.:i?:; ; jj::‘i:i:ii:-i::lli:l::l:il~i:::.,:,~:,..  ; y : j ;:: : :_:: ‘.‘.“.,.  ,_,_ ., .,_.:: ., .; .,.,.: 1.. _::., ,.: : ::.:. .,.:::. .‘. :. :. :‘. .‘. :.:: ‘_‘. :. ::::_.; .,. .;;; .;,_ ‘.:_I : .,:, ,._.,. . . . . . . . . :::i:i~~~~~~pt~~~~~~iiil:i:,:::: f.,.:.I .;;;_ .,. . . . . . . . . ,,,.‘.‘.’ .’ ; ::..ll:llij:i:III:I:111  g:;;::  I::~A:Rsl~~~~~ii:~s~~~~~~l~~~~~::: ~.‘.‘.‘.‘.‘.‘.‘.‘.‘.‘.‘.‘.‘.‘.’  ‘: ‘. ‘.‘. ..‘. ..‘. .‘.‘. :::::: .‘.‘. . ::, ‘.’:: ‘.‘.’ ‘...‘.‘_ :. .‘.‘. .‘.‘.‘.~.~.‘_‘_‘.  ::_. ::::,::., : .. : :: ::. .: ‘. :: ,’ ‘, ‘, ‘.

BUS buses 12, 24-25, 50-59

HOME motor homes 23, 42, 65, 73

LTV light trucks and vans ( pickup 20-22, 28-41,45-49
trucks and standard vans)

MINIV minivans

MISC miscellaneous vehicles

MIIT medium and heavy trucks

MOT motorcycles

NOC nonoccupants

PC passenger cars

UTIL utility vehicles

20

13,90 and above

60-64, 66-72, 78, 79

80-89

l-11

14-19

Step 2: First-stage model selection

After the data are separated by vehicle class, a first-stage loglinear model for each class is
selected. The purpose of this model is to capture the essential relationships among the dichotomized
BAC and the other covariates. If the other covariates had no missing values, then this first-stage
model could be regarded simply as a logistic regression for predicting dichotomized BAC. The fact
that covariates  are sometimes missing, however, makes it necessary to model their full joint
distribution at this stage. Capitalizing on the well-known relationship between logistic regression and

‘In the 1993 FARS data, for example, there were no observed positive values of BAC
among bus drivers. Thus there were insufficient data to even fit a model without covariates,
because the observed data provided no information about the distribution of positive values of
BAC.
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loglinear models (Goodman, 1970) models that include all possible associations among the
covariates, and a simple association between the dichotomized BAC and each covariate were
examined. This model is selected by an automated stepwise procedure beginning with a null model
of no predictors. At each step, the significance of each term not in the model is tested. The most
significant term is entered into the model, provided that it is significant at the 0.1 level as judged by
a deviance (likelihood-ratio) test. After it is entered, the significance of each term currently in the
model is tested, and any terms that are no longer significant at the 0.1 level are discarded. This
discarding is performed one term at a time, beginning with the least significant term. The whole
process is repeated until there are no more terms outside of the model that are significant at the 0.1
level, and every term in the model is significant at the 0.1 level.

Model fitting at this stage is carried out via an ECM algorithm described in Chapter 8 of
Schafer (1997). The ECM algorithm and deviance procedures are implemented by Schafer in an S-
PLUS software library called CAT. The basic functions in CAT are called by macros that carry out
the stepwise variable selection automatically. There are two minor technical details associated with
this procedure. First, to avoid potential problems associated with maximum likelihood (ML) estimates
on the boundary, a small amount of prior information is added to smooth the estimates toward a
uniform table. In effect, fractional counts are added to each cell adding up to 5% ofthe total sample
size, distributed uniformly across the cells. Second, if the ECM algorithm fails to converge within 100
iterations while entering a term, that term is excluded from further consideration. Failure to converge
by 100 iterations indicates that the rate of missing information for that term is very high, and including
it in the imputation model could be risky.

The covariates considered for possible inclusion in the first-stage model are listed in Exhibit
2. With two exceptions, this same pool of covariates is used for each vehicle class. The two
exceptions are: (a) The covariates DRREC, RESTR,  LSTAT,  and SSS are excluded for the NOC
class because they are not defined for non-occupants, and (b) the combined model for the BUS,
HOME, and MISC may also include an extra covariate to distinguish among the three classes.



Exhibit 2
Covariates considered in the first-stage model for dichotomized BAC‘. ,.‘.I 1.’ 1.’ ., ” _,_. ‘. _,__ 1. ‘. : ‘.‘.’ 1 _,,I __’ ,,~:,,:.~,:,:.,_,  ,‘,‘,‘,‘::::,  ::::::.,.:,:,:.:.:,:. ,:.:.:.:,:, ,,,,, .;,. :::. ;.:,:.:.: _,._, ,......... ._. : .,. :,,.;:, :. ., 1:: I’, .,::::: .;;, ::., ..,.::. ‘.:_:.: : ‘.,.’ ‘.’ ., ,. .,.,. ., ,_,.,  _,.,.,_  y,:.:.:.;  : ” ” ” ” :.:.:::,:.:.,.:. .:.: I._. .:.;:.::. ::.,.: ::.:: .,.;‘. ..,_,.;,_ .,.;; .:.:. .I. .,::::::. :. .:::._:. .: .I. :.::.:. :::.: ‘.;::,. :: 1.. :., : ,,, 1, ., ., ,.;, .._.  .,._  ., ,, :_:::: :,._ _.;. .: :::::::.:.:.:_: 1. ._ .;_ ,,‘.‘*:, .,.,.’ :. .,.I ., .;: 1. ::.: ,:.; :. .: ‘.‘.I ,:.:: .:.,:.*.:.: ,:,:.::g,:,:,:,:: ,:.‘, ,.:.;::::~ ,:;,., : ‘._.::  .: ._.I :.: 1. ‘,’ : : .,. ., 1. :. .,1:: .~;~(#-&&& I,:,ljiii  --~:~~,,~.~-~,:,:~:~,~:1::~,::~~~~senp~~~n:~,’  jj: ;:;,:;;::  .;,;;;_i ~~_1:I~:Ill:_i~~II.~__:~,_:__~~~:~.~~~_~~::~:~_~:i~~I~~~~~~:_  ~~I-,l:l~:~~~:,~~~~~~~~lsiili:;::ji:~~:.,::~~~:ijl:~I_~~~:::-,  i..
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DRINKING police reported drinking l=no alcohol, 2=alcohol, 3=missing

AGE

SEX

RESTR2
.

SEV

LSTAT

DRREC

DAY

HOUR

sss

RDWY

age category

gender

use of restraint

injury severity

license status

previous incidents

day of week

time of day

vehicle role

relation to roadway

l=under  12, 2=12-20, 3=21-29, 4=30-39, 5=40-49,
6=50-59, 7=60 and over

1 =male, 2=female

l=no, 2=yes

1 =non fatal, 2=fatal

l=no valid license, 2=valid license

l=none, 2=1 incident, 3=2 or more incidents

l=Mon-Thurs, 2=Fri, 3=Sat, 4=Sun

1=6:00-9:59, 2=10:00-15:59, 3=16:00-19:59,
4=20:00-23:59, 5=0:00-5:59

1 =single vehicle, 2=multiple vehicle striking,
3=multiple vehicle struck

l=not on roadway, 2=on roadway

Step 3: Selection of a transformation for nonzero BAC

The second-stage model is a normal linear regression for predicting the actual level of BAC
among the cases for which BAC is positive. It would have been very convenient to fit a linear model
to Zog(BAC),  because the logarithmic transformation maps the positive real numbers to the entire real
line; a linear regression on the log scale would never predict a negative value ofBAC. Unfortunately,
for many vehicle classes the distribution of Zog(BAC’ was found to be negatively skewed. Preliminary

2Accounts only for the use of belts or helmets irrespective of the presence or absence of a
supplemental restraint system like an airbag at that seating position.
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analyses showed that normal linear regression models for ZogQ3AC’ could impute values for BAC that
are implausibly high. Power transformations of the form Zog(BAC+” for various bl gave better
results, but a value of A that worked well for one vehicle class often did not work well for another.
Choosing a value of 3L for each class by an interactive, trial-and-error procedure was straightforward
but tedious. Finally, an automatic procedure was devised based on the well-known
maximum-likelihood method of Box and Cox. The Box-Cox method finds the power transformation
that makes Zog(lBAC’” most nearly normal, as judged by the mode of the profile likelihood
function---i.e., the likelihood maximized with respect to the mean and variance for any fixed value
of a. The resulting ML estimate tended to worked well for many vehicle classes, but for some classes
it still produced a handful of imputed values for BAC that were implausibly high. Adding 1 to the
ML estimate, however, appeared to solve that problem. The automatic transformation procedure
proceeds as follows: (a) The Box-Cox estimate is found by a grid search over the values 0.1,0.2, . . .,
4.5. (b) The positive values of BAC are transformed to

g(BAC) =log(BAC)%” d

(c) ARer imputation, the imputed values are transformed back to the original BAC scale using the
back-transformation g-‘. The linear model occasionally imputes a negative value for g(BAC) which
cannot be transformed back. On these rare occasions, the missing value of BAC is simply assigned
to zero.

Step 4: Second-stage model selection

After an appropriate transformation is selected, a set of covariates is chosen to serve as linear
predictors in the second-stage regression model. All covariates in the first-stage model, with the
exception of the dichotomized BAC, are eligible for inclusion in the second stage. From this pool,
a subset of significant predictors is chosen by ordinary-least square stepwise regression ofg(BAC)
on dummy indicators for the categorical predictors. For simplicity, the stepwise procedure adopts
a complete-case (CC) approach, omitting from consideration any persons with missing covariates.
The CC method is nearly efficient as the overall proportion of cases discarded at this stage tends to
be small. It is to be noted that the CC method is applied only for purposes of variable selection; after
the second-stage covariates are determined, the actual imputation procedure described below
operates on the full set of observed data, including cases that are only partially observed.

Step 5: Imputation

Once the first and second-stage covariates  have been selected, multiple imputations of the
missing data are created under a general location model (GLOM). The GLOM is simply a
combination ofthe first-stage loglinear model with the second-stage linear regression procedure. The
imputation proceeds as follows. First, ML estimates of the model parameters are found using an ECM
algorithm described in Chapter 9 of Schafer (1997) implemented in the software library MIX. Then,
using the ML estimates as starting values, new values of the parameters are simulated from their
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posterior distribution by a Markov-Chain Monte Carlo (MCMC) algorithm, also described in Chapter
9 of Schafer (1997). Experience has shown that the number of steps required for ECM to converge
is a conservative estimate of the number of steps required for the MCMC method to achieve
approximate stationarity, especially if the chain is started at the Maximum Likelihood Estimate
(MLE). Beginning at the MLE, the chain is allowed to run for this many steps and the missing data
are imputed under the simulated values of the parameters. Repeating the process ten times results in
ten imputations of the missing data as ten random starting values are provided for the simulation by
the random number generator function. The imputed values ofg(BAC) are then transformed back to
the BAC scale, and rounded to the same number of decimal places as found in the original data.

In the initial rounds of imputation, the MCMC algorithm behaved erratically for two of the
largest vehicle classes, namely the PC and the LTV classes; the algorithm halted due to numeric
overflows. After an extensive investigation, it was discovered that the overflows were caused by
unduly large simulated values of the residual variance in the second-stage regression model. The
posterior distribution, it turned out, was nonexistent. The “Jefieys prior” that was being used assigns
uniform density over the real line to all values of log(02).  This is not a proper probability distribution,
and in some cases it may result in an improper posterior. To remedy the problem, the Jeffreys prior
was replaced with a scaled inverted&i  square,

In this prior distribution, c/v can thought of as a prior estimate of 02, and v can thought of as a prior
number of degrees of freedom on which this estimate is based. To distort the inferences as little as
possible, v ,‘was chosen to be equal to 3 and c was taken to be the ML estimate of 3a2 obtained from
the ECM algorithm. Under this prior, the MCMC algorithm exhibited no more numerical difficulties.

4. Analyzing the multiply-imputed datasets

In this section, two methods for analyzing the multiply-imputed datasets are reviewed: Rubin’s (1987)
method for scalar estimands, and the method of Meng and Rubin (1992) for combining
likelihood-ratio test statistics.

Method for scalar estimands

Let 0 be a one-dimensional quantity of interest --- a population proportion, a coefficient from a linear
or logistic regression model, etc. The goal is to find a confidence interval or test a hypothesis about
Q. Let Y denote the data fi-om FARS that are necessary to estimate Q, which is partitioned into
observed and missing parts,

where Y& is seen, but the missing part ymis is unknown and has to be multiply imputed. Let 0 be
the complete-data point estimate for Q, the estimate that one would use if no data were missing. Let
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U be the variance estimate associated with Q, so that JUis the complete-data standard error. As U

and Q are both functions of Y=(Y,,,,Yti), they may rewritten as &Y,,,, Ytis) and U(Y,,,,Yti),
respectively. Multiple-imputation inference assumes that the complete-data problem is sufficiently
regular and the sample size sufficiently large for the asymptotic normal approximation

to work we1.l. With m imputations, m different versions of Q and U can be calcu

A
Q @) = &Yobs,Ymi~))

u-‘“(Q - &N(O,l)

lated. Let

(1)

and

be the point and variance estimates using the tth set of imputed data, e-1,2,. . . ,m. The
multiple-imputation point estimate for Q is simply the average of the complete-data point estimates.

m- A
Q 1-

CQ
(0- - .

m t=l
(2)

The variance estimate associated with Q has two components. The within-imputation variance
is the average of the complete-data variance estimates,

1 m-
U - t- -

c UC) .
m t=l

and the between-imoutation variance is the variance of the complete-data point estimates,
A

The total variance is defined as

B -- --&$ (Q”’ - e>‘.
- t=

(3)

T=i?+(l

11

+ m -‘)B, (5)



and inferences are based on the approximation

1 T-‘/“(Q - e> H t,,,

where the degrees of freedom are given by

-

v = (m-l)[l+ u 12.
(1 +m -l)B

Thus a lOO( l-a)% interval estimate for Q is

e tIt v, l-al2J-T7

and a p-value for testing the null hypothesis

Q = Q’

against a two-sided alternative is

2P(tv> T -‘“l&Q ‘I)

or, equivalently,

PIFl ,2 T -‘<e-e ‘)“I.3

The degrees of freedom (7) depend not only on m, but also on the ratio

(1 +m -l)Br= _ .
U

(6)

(7)

(8)

(10) -
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Rubin (1987) calls r the relative increase in variance due to nonresponse, because U represents the
estimated total variance when there is no missing information about Q (i.e., when B=O). When m is
large and/or r is small, the degrees of freedom will be large and (6) will be approximately normal.
Moreover,

i = (@-1-(v+1)(v+3)-1T-1)6
- (r+2)l(v +3) (11)-

r+l

is an estimate of thefiaction of missing information about Q. In applications, examination of r and
is highly recommended, as they are interesting and useful diagnostics for assessing how the missing
data contribute to inferential uncertainty about Q. An implementation of this method for scalar
estimands is part of the accompanying software packages CAT and MIX, in an S-PLUS fhction
called mi . inf ekence (see Appendix). More information is provided by the S-PLUS command
help(mi.inference). The three examples described below illustrate sample analyses of

Aa

multiply-imputed datasets.

Example 1: Population proportions

This example finds a confidence interval for a population proportion. Under simple random sampling,
the natural complete-data estimate 0 is the sample proportion, and the natural estimate of its
variance is

where n is the sample size. To obtain the confidence interval, calculate 0 (l), . . . 0 (m) and U(l), . . .,
UCm) fi-om the multiply-imputed dataset and apply (2)-(8). The S-PLUS file analyze . s contains
examples of how to carry this out within S-PLUS.

Example 2: Logistic-regression coeffkients

This example performs a logistic-regression analysis on the multiply-imputed dataset. In this
case, @ is an estimated coefficient and U is its squared standard error, both of which are provided
by standard logistic-regression software. The regression model is fit m times, once for each
imputation, storing the m sets of coefficients and standard errors. The S-PLUS function
mi . inference will apply the combination rules for all coefficients at once, automatically
producing a table of combined estimates, standard errors, and p-values.
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Combining likelihood-ratio tests

The methods described above aid in making inferences about scalar parameters one at a time.
Occasionally, however, it is necessary to make a joint inference about a group of parameters at once.
For example, if one is interested in testing the null hypothesis that a particular regression model is
true, versus the alternative that a larger model is true, where (a) the smaller model is a special case
of the larger one, and (b) the two models differ by k>l degrees of freedom. The most straightforward
way of obtaining a p-value in this situation is to combine the results of m likelihood-ratio tests, using
the method of Meng and Rubin (1992). Let q denote the vector of unknown parameters in the
analyst’s model, and Q=Q(q) a k-dimensional function of 9 that is of interest; specifically, we wish
to test the hypothesis that Q=Q’ for a given Q’. Let Z($IY,b,, YtiS) denote the complete-data log-
likelihood function, @ the MLE or maximizer of Z(51rj YobS, YmJ, and $ the maximizer of Z(fl YobS,

Y,d subject to the constraint Q(p) =Q’. In regular problems, the complete-data likelihood-ratio test
statistic

is asymptotically distributed as q2 under the null hypothesis. Let

d-L(f) = d,( Q”‘, i/$(f)l Yobs, Y’“s),

be the likelihood-ratio test statistic from the tih imputed dataset, ~-1~2,  . . . ,m, where Y? is the
maximizer of Z(fl YobS, YmiStOj and Y!‘,‘t’ is the maximizer of Z(51r/ YobS, Y,,@j subject to Q(p) =Q ‘. Let

-
dL=

1 m

-c d (0
L

m (t=l)

be the average of these likelihood-ratio statistics, and

1 m-
Y -- -

E@
(0

mt=l ’ (12)
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be the averages of the complete-data estimates of q across imputations. Finally, let

-
dL= ‘2 dL(I-J&I~o~S7~~~)

m t=l

1 m-
Po=-m

(0
0

m t=l
(13)

be the average of the likelihood-ratio statistics evaluated at Y, and Y’, rather than at the
imputation-specific parameter estimates. The test statistic proposed by Meng and Rubin (1992) is

-
d

D L-- -
k(1 +r)’

where

m+l - Nr=
k(m-1) (dL - Ld)

(14)

(15)

is an estimate of the average relative increase due to nonresponse across the components of $
The p-value associated with D is

p = P(Fkv>D)9 (16)

with degrees of freedom calculated as

v={ 4+(t-4)[ 1 +( l -2t -l)r -112 if t = k(m - l)%,
t( 1 +k -‘)( 1 +r -1)2/2 otherwise.

In addition to the usual likelihood-ratio test statistics for each imputed dataset, this procedure also

requires evaluation of the complete-data likelihood ratio at ( $ , j& ) for each dataset.

Implementation of this procedure thus requires code for evaluating the complete-data loglikelihood
at user-specified values of the parameter, something which is not typically provided in standard
statistical software. For many commonly used models, however, the complete-data log-likelihood is
straightforward to derive and compute, and with a little effort on the part of the analyst, the
procedure can often be implemented without difficulty.
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Example 3: Testing the joint significance of a group of logistic-regression coeffkients

A logistic-regression model is

7=c
1% i - T- - 41-n i7

i
(17)

whereni denotes the probability of “success” for subject I, xi is a vector of covariates for subject I,
and ,O a vector of unknown coefficients. With complete data, the loglikelihood function for the
logistic model (17) may be written as

xi’P
z(pIy~~~7ymi~)  = g llz,logL

i=l 1 +ex’TP
+ (1 -‘i)l”gl],

1 +e ‘irp

where q=l if individual I has a success, and zi=O otherwise (e.g. McCullagh  and Nelder, 1989).
Suppose one wants to test the null hypothesis that a group of k>=l coefficients is simultaneously
zero. The usual likelihood-ratio test with complete data requires one to fit (a) the full model with all
variables, and (b) the reduced model with all variables except those whose coefficients are zero under

the null hypothesis. The ML estimates of punder the full and reduced models are denoted by p

and p , respectively. For notational convenience, it is assumed that p and 13 are of the same

length, with the elements of b corresponding to the omitted variables set to zero. The

likelihood-ratio test statistic is

which, under the reduced model, is approximately distributed as x2k because the reduced model differs
from the full model by k parameters. The method of Meng and Rubin (1992) requires two passes

through the imputed data. Let 8”’ and p”’ denote the ML estimates for the full and reduced
models, respectively, fit to the t* imputed dataset. In the first pass, the likelihood-ratio statistic is
calculated for each imputed dataset and their average computed as,
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-
dL=

In the second pass, the average of the likelihood-ratio test statistics is calculated with fi@’

a n d  p”’ replaced by their averages,

-
dL= LF dL(m $ ~‘t)lYobs,Y~~).

m t=l t=l

The test statistic D and p-value are then found by (14)-( 16).

5. Comparing the results of multiple imputation and the previous method

Multiple imputations of missing BAC have been created for the FARS databases for 1982,
1986, 1990, 1993 and 1995. In 1997, an extensive study was carried out at NHTSA  to compare the
results of the new imputation method to those of the previous system implemented by Klein (1986).
Klein’s method differs from the new system in that it relies on a linear discriminant model rather than
a general location model (GLOM). Moreover, Klein’s system estimates probabilities for the three-
level categorization BAC3, rather than imputing random values of BAC. In many other respects,
however, the two methods are quite similar. In both methods, the FARS data are split by vehicle class
prior to modeling, and both employ stepwise variable-selection procedures using nearly identical
pools of covariates. Finally, both methods regard DRINKING as a three-level (yes, no, missing)
categorical predictor, in recognition of this variable’s unusual pattern of nonresponse.

Because of the strong similarities between the two methods, they are expected to produce
similar results. In particular, it was expected that estimates of the rates of alcohol involvement
(BAC>O) and rates in excess of the typical legal limit (BAC? 10) within important subclasses would
be similar. In many respects the pattern of results was indeed similar. One important difference,
however, was that under the new method the estimated rates of alcohol involvement (BAC>O) were
generally higher. Positive differences of about 2% in the rate of alcohol involvement appeared
consistently across most vehicle classes and demographic subgroups, and across classifications of
crashes by time of day and day of week. Differences in rates across subgroups, and trends in rates
across time, were quite similar under the two methods. The only major discrepancy was that the
baseline rates of alcohol involvement were slightly but consistently higher under the new method.

Exhibits 3 through 6 present a comparison of the BAC estimates from the multiple imputation
method to those of Klein s (1986) discriminant model under various categories traditionally reported
and released by NHTSA  in its annual fact sheets. The estimates from multiple imputation are printed
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in each cell accompanied by the corresponding estimates from the discriminant method in parenthesis.
The values in each cell are the percentage of all crashes or drivers in that category for two levels of
BAC, namely 0.013  and greater (O.Ol+) as well as 0.10 and greater (O.lO+). For example, an entry
of 3 6.2 for a given year for drivers killed in the 0.0 1+ category means that for that particular year,
3 6.2 percent of all the drivers killed in fatal crashes had a BAC of 0.0 1 or greater.

Exhibit 3 presents the overall rates of alcohol involvement and intoxication in fatal crashes
as estimated by the two methods. Alcohol is said to be involved in a fatal traffic crash if either the
driver of any vehicle or a nonoccupant (pedestrian or pedalcyclist) involved in the crash has a BAC.
of 0.01 or greater. A driver or nonoccupant is deemed “intoxicated” if the BAC is 0.10 or greater.
Exhibit 4 presents similar comparisons for drivers only, i.e., for any driver with the relevant BAC level
in any vehicle involved in a fatal crash. The statistics have been broken down by categories of sex,
age and for the four major categories of vehicle type, namely, passenger cars, light trucks and vans,
medium and heavy trucks, and motorcycles. Exhibits 5 and 6 present the corresponding results for
drivers killed and nonoccupants killed, respectively.

Exhibit 3: Percentage Alcohol involvement and intoxication in fatal crashes.

Fatal 59.1 49.2 53.8 42.9 50.7 41.4 44.6 36.3 42.5 34.2
Crashes (56.7) (46.1) (51.7) (40.8) (49.4) (39.7) (43.5) (35.0) (41.3) (32.8)

I Fatalities Total 1
59.5

1
49.3 54.1 42.9 50.7 41.2 44.6 36.0 41.9 33.5

(57.3) (46.3) 1 (52.2) 1 (41.1) 1 (49.6) 1 (39.6) 1 (43.5) 1 (34.9) 1 (41.3) 1 (32.5) 1

Note: Cell entries represent Multiple Imputation
(Klein Method)

3A BAC level of 0.01 implies that the alcohol content is 0.01 grams/deciliter. Because
BAC is reported to two decimal places, the O.Ol+ category includes all positive values of BAC.
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Exhibit 4: Alcohol involvement for drivers in fatal crashes.

Total Drivers

Total 40.8 32.3 36.0 27.4 33.2 26.0 28.1 21.9 26.8 20.7
(38.9) (30.0) (34.3) (25.8) (32.1) (24.7) (27.3) (21.0) (25.5) (19.3)

Total Drivers Involved by Sex

Male 1 44.0 1 35.0  1 39.6  1 30.3 1 37.2  1 29.4 1 31.6  1 24.7 1 29.9 1 23.2 1
(41.8) (32.4) (37.6) (28.5) (35.7) (27.7) (30.5) (23.7) (28.5) (21.8)

Fern ale 26.9 20.4 21.8 15.7 20.1 14.9 17.2 12.9 17.3 13.0
(25.7) (18.9) (20.9) (14.8) (19.2) (13.8) (16.5) (12.1) (15.7) (11.2)I I I I I I I I I I I I

Total Drivers Involved by Age

16-2016-20 44.844.8 32.432.4 37.237.2 24.424.4 32.632.6 22.322.3 24.724.7 16.516.5 21.821.8 14.114.1
(44.0)(44.0) (31.1)(31.1) (36.4)(36.4) (23.7)(23.7) (31.7)(31.7) (21.1)(21.1) (24.5)(24.5) (16.2)(16.2) (20.6)(20.6) (12.7)(12.7)

21-2421-24 53.553.5 42.642.6 49.049.0 37.637.6 46.146.1 36.336.3 40.240.2 31.531.5 37.837.8 28.528.5
(51.5)(51.5) (40.0)(40.0) (47.2)(47.2) (36.1)(36.1) (44.9)(44.9) (34.7)(34.7) (39.4)(39.4) (30.7)(30.7) (37.2)(37.2) (27.8)(27.8) ,,

25-3425-34 46.346.3 37.937.9 43.643.6 34.934.9 42.842.8 34.734.7 37.237.2 29.829.8 35.635.6 28.728.7
(43.9)(43.9) (35.1)(35.1) (41.5)(41.5) (33.0)(33.0) (41.3)(41.3) (33.0)(33.0) (36.1)(36.1) (28.5)(28.5) (33.9)(33.9) (26.8)(26.8)

35-4435-44 37.637.6 31.031.0 33.033.0 26.726.7 33.733.7 27.827.8 30.930.9 25.225.2 30.630.6 24.824.8
(34.9)(34.9) (27.9)(27.9) (30.6)(30.6) (24.5)(24.5) (32.0)(32.0) (25.8)(25.8) (29.3)(29.3) (23.6)(23.6) (28.6)(28.6) (22.8)(22.8)

45-6445-64 28.728.7 23.223.2 21.521.5 17.817.8 19.719.7 17.017.0 20.220.2 15.715.7 19.819.8 15.815.8
(26.4)(26.4) (20.7)(20.7) (20.2)(20.2) (16.2)(16.2) (18.5)(18.5) (15.5)(15.5) (18.4)(18.4) (14.6)(14.6) (18.4)(18.4) (14.3)(14.3)

Over 64Over 64 14.914.9 10.710.7 11.711.7 7.37.3 10.610.6 6.86.8 8.38.3 5.55.5 8.48.4 5.75.7
(13.7)(13.7) (9-9(9-9 (10.5)(10.5) (6.8)(6.8) P-7)P-7) (6-3)(6-3) (8-O)(8-O) (5.4)(5.4) (7.4)(7.4) VWVW
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Exhibit 4 (Continued..) : Alcohol involvement for drivers in fatal crashes.

Total Drivers Involved by Vehicle Type ,

33.2
(30.6)

36.3
(34.7)

27.4
(25.8)

28.5
(27.3)

20.7
(19.2)

Pass. Cars 41.9
(39.9)

22.0 26.8
(20.7) (25.7)

36.6
(34.4)

38.9
(37.2)

30.6
(29.5)

31.7
(31.1)

25.5
(22.8)

25.9 31.7
(24.9) (28.7)

3.4
P-3)

5.5
(4-5)

7.2
WJ)

4.3
(3.2)

1.7
(1.4)

1.7 3.4
(l-7) (3.1)

52.5 39.8
(52.1) I I(39.3)

42.6
(40.5)

55.7
(54.4)

42.3
(40.9)

45.4
(44.0)

29.8
(29.2)

Motorcycles 55.5
(53.5)

33.9 41.6
(32.9) (40.7)

20



Exhibit 5: Alcohol involvement for drivers killed in fatal crashes.

Total Drivers Killed

Total 55.5 46.2 49.8 40.0 46.3 38.2 41.0 33.8 38.7 31.5
(53.1) (43.8) (48.2) (38.7) (45.9) (38.0) (39.7) (32.8) (37.9) (30.9)

Total Drivers Killed by Crash Type and Time of Day I
”.:I’ ‘..,.,: ‘. ‘.‘_.,:. ,” ‘.’ .I. ‘.I ,:I‘. .‘.‘.’ ‘.‘. :,,._, ,_,

1. ._:‘; :s$@$:;:: ;;j:.; ::I
: :,: 70.9 61.4 66.2 55.8 63.2

_:’ ~e~~~~~l~~~~~~ $
54.2 57.7 49.7 54.9 46.3_‘. ,,_;’ : ‘.‘.,_,:  :;:. : ‘.‘.’ (68.7) (59.6) (64.3);; _. (54.5) (62.9) (54.2) (56.5) (48.9)

:, ,.: . . ‘, ‘I.., ‘.’ _‘_ :: _: .,“_ :,
(54.9) (46.7)

SV-Daytime 42.2 34.4 36.5 28.7 33.4 26.9 28.9 23.3 28.5 22.7
(39.7) (32.1) (34.3) (27.2) (33.2) (26.8) (27.8) (23.1) (27.2) (21.8)

SV-Nighttime 82.9 72.7 80.3 68.6 78.1 67.9 74.4 64.9 70.2 60.1
(80.8) (71.1) (78.5) (67.5) (77.9) (68.1) (73.0) (63.9) (71.3) (61.6)

__’
::., :
.:. ‘. ,$&&Y;;:  : :.. :. j’,j,  1;;;

3g.g 30.7 33.9 24.8 29.8
i: :,:~eh.~~le~~~~.,:I:,I

22.6 25.4 19.1 23.7 17.8
,.I_ . . :_  :. (37.4) (27.9) (32.6) (23.5) (29.4) (22.2) (24.1) (18.0) (22.3) (16.4)

: : “_

MV-Daytime 20.3 14.3 17.8 11.5 14.4 9.5 12.0 7.9 12.7 8.2
(18.4) (12.1) (16.8) (10.5) (14.0) (9-l) (10.8) (7-O) (11.3) (7-O)

nav- 58.9 46.6
I Nighttime 1 1 1

54.1
1

41.4 50.6 40.4 46.4
(55.8) (43.4) (52.4) (39.8) 1 (50.1) 1 (39.8) 1 (44.8) 1 $5::) 1 (if:;) 1 (i;::) 1

Total Drivers Killed by Day of Week 1
Weekday 46.0 37.7 40.6 32.3 36.0 29.2 31.1 25.4 29.6 23.8

(43.5) (35.3) (39.0) (31.1) (35.5) (28.8) (30.1) (24.8) (28.7) (23.1)

1 Weekend 1 66.8 1 56.3 1 61.8 I 50.1 1 59.5 1 49.8 1 54.9 1 45.7 1 51.8 1 42.6 1

Weekday 46.0 37.7 40.6 32.3 36.0 29.2 31.1 25.4 29.6 23.8
(43.5) (35.3) (39.0) (31.1) (35.5) (28.8) (30.1) (24.8) (28.7) (23.1)

Weekend 66.8 56.3 61.8 50.1 59.5 49.8 54.9 45.7 51.8 42.6
(64.6)(64.6) (54.1)(54.1) (60.1)(60.1) (48.7)(48.7) (59.3)(59.3) (49.8)(49.8) (53.1)(53.1) (44.4)(44.4) (51.3)(51.3) (42.3)(42.3)

Total Drivers Killed by Time of Day

Daytime 28.6 21.9 24.5 17.6 21.3 15.8 18.0 13.3 18.3 13.3
(26.4) (19.6) (23.0) (16.5) (21.0) (15.5) (17.0) (12.8) (16.9) (12.2)

Nighttime 72.8 61.8 69.5 57.5 67.0 56.7 63.0 53.4 59.2 50.0
(70.3) (59.5) (67.8) (56.1) (66.7) (56.6) (61.6) (52.3) (59.1) (50.0)
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Exhibit 5 (contd.): Alcohol involvement for drivers killed in fatal crashes.

Total Drivers Killed by Day of Week and Time of Day

Weekday 24.7 18.6 20.9 14.9 17.6 12.6 14.7 10.8 15.2 11.0
Daytime (22.3) (16.2) (19.5) (13.8) (17.2) (12.3) (13.7) (10.4) (13.7) (9-8)

Weekday 68.8 58.1 65.2 54.0 62.1 52.6 57.0 48.3 53.5 44.8
Nighttime (66.1) (55.6) (63.4) (52.7) (61.6) (52.3) (56.1) (47.2) (53.5) (45.1)

Weekend 38.5 30.3 33.6 24.5 31.0 24.1 27.0 20.2 26.8 19.5
Daytime (36.9) (28.3) (32.1) (23.3) (30.9) (24.0) (25.4) (19.1) (25.5) (18.7)

Weekend 75.9 64.6 73.0 60.3 70.7 59.9 67.8 57.5 63.9 53.9
Nighttime (73.6) (62.4) (71.4) (58.9) (70.5) (59.9) (66.0) (56.2) (63.9) (53.9)

.

Exhibit 6: Alcohol involvement for nonoccupants killed in fatal crashes.

Pedestrian Fatalities by Age Group

16-20 57.4 44.8 43.4 31.6 42.1 32.4 36.3 29.1 32.1 25.3
(58.8) (47.0) (47.4) (35.6) (46.6) (35.6) (42.0) (33.8) (38.0) (29.9)

21-24 64.8 56.0 64.3I 1 (62.4) 1 (52.1) 1 (62.6) 1 ,:i:i) 1 (:i:f) 1 (::::, 1 (:i::) 1 (:i::) 1 (%) 1 (:& 1

I 1 (61.6)  1 (53.3)  1 (61.9)  1 (53.0)  1 (64.4)  1 (56.8)  1 (61.2)  1 (53.2) 1 (58.1)  1 (49.8)  1
I 25 -34 1 63.9 1 56.6 1 63.9 1 55.3 1 65.4 1 58.1 1 62.4 1 55.1 1 59.4 1 51.1 1

35-44 61.4 55.4 61.0 53.6 59.7 52.6 58.3 51.8 58.8 50.2
(55.8) (48.5) (57.7) (49.4) (57.8) (50.3) (57.2) (50.6) (56.5) (48.3)

45-64 52.3 45.7 48.1 41.7 44.0 36.9 41.6 36.5 44.4 38.9
(48.3)

I 1 1 1
(40.7) (46.2) (39.4) (43.5) (35.8) (40.7)

Over 64 20.1 14.9 17.3 11.2 12.9 9.4 18.0 13.6 14.6 10.8
(19.2) (13.8) (17.0) (10.8) (12.9) (9-O) (15.7) (10.6) (15.3) (10.8)

1 (35.0)  1 (43.3)  1 (37.6)  1

Total 45.7 40.3 39.3 32.5 37.8 32.2 37.2 32.0 36.6 30.9
(40.7) (33.8) (38.7) (31.5) (37.7) (31.6) (37.5) (31.8) (36.5) (30.4)

1
Pedalcyclists 21.5 16.1 17.0 12.3 20.6 16.6 21.4 16.1 23.5 19.0

(20.3) (14.3) (17.7) (12.2) (21 .O) (15.9) (23.3) (17.1) (24.2) (18.9)
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Upon further investigation, the generally higher rates of alcohol involvement under the new
imputation system could be attributed to a fundamental difference between the GLOM and the linear
discriminant models for BAC. In classical linear discriminant analysis, the joint distribution of the
predictor variables is assumed to have constant variances and covariances  across classification
groups. The loglinear model within GLOM, however, makes no such assumption about the
predictors. When this covariance assumption is (at least approximately) satisfied, the two approaches
will predict essentially identical rates of alcohol involvement. When the assumption is violated,
however, slight biases can be introduced by a linear discriminant approach relative to loglinear
modeling. In Klein’s (1986) discriminant models, the covariate DRINKIN G is expressed in the form
of two dummy indicator variables to distinguish among the three groups (yes, no, missing). Because
of the strong correlation between DRINKING and BAC, and because of the inherent relationship
between the mean and variance of a binary variable, the variance of the DRINKING  variable differed
sharply among cases observed to have BAC=O and those with BA00. Empirical investigations
showed that this discrepancy would be sufficient to introduce a downward bias in discriminant-based
estimates of alcohol involvement of approximately 2%.

6. Multiple imputation of known BAC values set to ‘missing’

Because of the complexity of the new multiple imputation method, additional validation tests
were conducted to ensure that the method produced plausible estimates. The most convincing
evidence that the new procedure is performing properly came from an experiment in which multiple
imputations were created for ‘known’ values of BAC in the FARS files. A subset of crash records
with known values of BAC was extracted from the FARS files. Twenty-five percent of these values
were chosen at random and set to be “missing”. BAC values for these missing data were then
imputed by the multiple imputation procedure, and the results from imputation were compared to the
known figures. This validation experiment was carried out on data drawn from 1982,  1986, 1990,
1993,  and 1995. Results from this experiment are summarized in Exhibits 7 and 8. For each year,
these Exhibits report the known true rates of alcohol involvement and intoxication among the 25%
of the cases that had been set to missing, and the rates among the same cases estimated from the
multiple imputation method. Exhibit 7 presents results for drivers involved in fatal crashes subdivided
by time of day, and Exhibit 8 presents the corresponding results for drivers killed. The imputed results
track the known true values quite closely. Similar good behavior is seen when the data are subdivided
by other crucial variables (e.g., gender and age).

If this experiment were replicated a large number of times, it would be possible to conduct formal
tests ofunbiasedness ofthe imputation method under this completely random missingness mechanism.
The value of such tests would be dubious, however, because the nonresponse in FARS is not
completely at random. We have strong evidence that missing values ofBAC in FARS are more likely
to be zero than are the observed variables, because ofthe relationships between missingness and many
covariates that are strongly related to BAC. Nevertheless, the data in these Exhibits do suggest that
the GLOM that underlies the multiple imputation procedure is capable of preserving essential features
of the BAC distribution, both in a marginal sense and conditionally upon important covariates. A
similar experiment was performed on the Discriminant  method and is documented in the Model
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Validation and Maintenance section of the report of Klein (1986).

Exhibit 7: BAC Estimates for Total Drivers Involved for
the 25% of Known values randomly set to Missing

Total Drivers Involved

Known 64.3 51.9 57.1 43.8 51.2 40.6 46.0 36.9 43.7 34.7

I h/II 1 63.2 1 53.2 1 56.2 1 45.6 / 50.7 1 41.9 / 45.7 1 37.7 1 43.6 1 35.7 1

Total Drivers Involved (Daytime) --1
Known 33.8 24.5 30.1 21.1 24.5 17.7 20.8 15.5 20.8 15.1

MI 36.2 30.2 29.7 23.7 24.9 20.3 21.2 17.0 20.9 16.7

Total Drivers Involved (Nighttime) 1
Known 78.4 64.7 73.3 57.3 68.3 55.2 64.8 52.9 62.5 50.8

MI 75.7 64.0 72.1 58.9 67.5 56.0 64.2 53.2 62.2 51.3

Exhibit 8: BAC Estimates for Total Drivers Killed for
the 25% of Known values randomly set to Missing

Total Drivers Killed

Known 63.0 53.3 56.0 44.6 51.8 43.3 47.3 39.7 45.3 37.7

MI 62.2 54.3 55.2 47.0 50.5 42.9 47.0 40.4 45.2 38.6
I I

Total Drivers Killed (Daytime)\
Known 31.3 23.4 28.5 20.0 24.0 18.0 20.6 15.9 21.0 15.5

MI 31.0 29.1 28.5 23.6 24.0 20.1 21.5 18.0 21.5 17.7

Total Drivers Killed (Nighttime)

Known 79.3 68.8 74.3 61.0 70.9 60.7 68.4 58.6 66.3 56.9

MI 77.0 67.3 73.1 62.7 69.0 58.7 67.2 58.3 65.7 56.6

24



7. Discussion

The new multiple imputation procedure for missing values of BAC in FARS represents a substantial
improvement over the previous method based on three-class linear discriminant models. One major
advantage of the new procedure is that the imputed datasets facilitate a wider variety of analyses. It
is now possible, for example, to estimate intoxication rates under definitions of intoxication other than
BAC=O. I+. Another important advantage is that uncertainty due to missing data in virtually any
summary statistic can now be assessed in a straightforward way, using the rules for
multiple-imputation inference developed by Rubin (1987) and Meng and Rubin (1992).

Because of inherent differences between loglinear and linear discriminant models, rates of alcohol
involvement (BADO) estimated under the new method will tend to be slightly higher than those
previously published. Increases of about 2% in base rates should be expected overall and within
important subgroups. Important differences in rates (e.g., trends over time), however, should be
relatively unaffected by the change in the missing-data procedure.
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Appendix: Implementation of the Multiple Imputation System at NHTSA

The software for imputing the missing values of BAC in FARS is written in the Fortran and
S-PLUS programming languages. The Fortran code was compiled in NHTSA’s DEC Alpha System
using the standard Fortran- Compiler. The S-PLUS ~3.3 compiler by MathSoft was used to
process the S-PLUS codes. The programs are compatible with the Digital Unix ~4.0 base operating
system. The S-PLUS routines access the Fortran routines using standard object links to the compiled
routines. BATCH jobs of the imputation runs can be executed remotely from any site that has access
to the NHTSA’s R&D Unix Cluster.

NHTSA  began providing imputed values of BAC from 1982. The FARS data for the years
1982, 1993 and 1995 were chosen to test and validate the multiple imputation software. The FARS
ASCII files were transmitted to the UNIX system from the LAN of NCSA using standard File
Transfer Protocols (FTPs). BAC values are imputed only for drivers ( FARS Person Type=Ol)  in
the vehicle classes as well as pedestrians and pedalcyclists (05<=FARS Person Type <=08) .

The programs to perform the multiple imputations are written in a combination of S-PLUS
and Fortran programming languages. The software has been implemented on NHTSA’s Digital Unix
Alpha Server System. The CAT and MIX software packages comprise the two main components
of the imputation programs.

CAT and MIX libraries

CAI’ and MIX are general-purpose packages that have been written for analyzing incomplete
CATegorical  and MIXed (continuous and categorical) data, respectively. They contain a large
number of S-PLUS functions, S-PLUS help files, and Fortran source code. Basic versions of CAT
and MIX are distributed at fittu:/~~w.sta~.psu.edu:‘-ilslmiso~wa.htn~.  These versions were
extended with specially written S-PLUS functions to carry out the more tedious aspects of the
procedures (e.g. stepwise modeling) automatically.

S-PLUS imputation programs

The five files listed below contain S-PLUS code for multiple imputation of BAC in FARS.
The files must be executed in the stated order.

bacvars.s ’

This file reads in the FARS data, edits variables, and splits the data by vehicle class. The input
FARS data is organized into the person, vehicle and crash level variables. The format and record
layout for each of these files is listed in the appendix. The three input files are analytical files in the
standard ASCII format that can be created from the appropriate SAS data sets. Bacvars . s reads
the data from these files and extracts the information pertaining to drivers and non-occupants
(pedestrians and pedalcyclists). The categorical variables are then coded into different levels for
analyses by the next modules of the software.
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model1.s

The set of functions in this program perform the stepwise variable selection of the first-stage
loglinear model for each vehicle class. The input for this module is the S-PLUS data object created
by bacvars. so This program creates an S-PLUS file that contains the statistics for the selected
variables for each of the vehicle classes.

mode12.s

The power transformation for ZogQQK”” and variable selection for the second-stage regression
model for each vehicle class are performed in this stage. The input file for this program is the S-
PLUS object containing the selected variables and the significance-statistics for each of these
variables. This module selects the variables needed to impute the non-zero values of BAC. The set
of variables selected by these set of routines is a subset of the variables selected by modell. s .

impute .  s

This is the program that performs the actual imputations ofBAC given that BAC2 is not zero.
The imputation procedure is performed for each of the vehicle classes. The ten imputations are then
linked with the identifiers and an analytical file containing the ten imputations is created.

In addition, the file sf uncs . s contains S-PLUS functions needed by the other files. The
function to perform the stepwise model selection is part of sf uncs . s l This program calculates
the deviance test-statistics and the p-values for the variables that are entered into the forward-
selection/backward-elimination stepwise procedure.

A users-manual has been documented to illustrate the program steps in detail. Sample
analyses of the imputed data can be performed using the program analyze . s. This program
contains functions that compare the estimates by the multiple imputation method and the estimates
by the discriminant method (Klein, 1986).

Sample analyses in S-PLUS

The file analy z e . s contains sample analyses of a multiply-imputed FARS dataset. Three types of
analyses are presented:

(a) tabulations of proportions within the three traditional BAC categories (0, 0.0 l-0.09,
0. lo+) by age of the driver/nonoccupant  and vehicle class;

(b) tabulations of proportions within two additional categories (0.0-0.04, 0.05+) by age and
vehicle class; and

(c) logit modeling of BAC>O.
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